To convert a set of three Euler angles, $\phi_{1}, \phi_{2}, \phi_{3}(1,2,3$ are the first, second, third Euler rotations, not the axes of rotation) to the equivalent quaternion:

Note: You must know the Euler rotation axis sequence, i.e 123, 321, 213, 121, etc.

1) form three quaternions from the three Euler angles:
a. for a " 1 " rotation axis, the quaternion is
$\sin (\phi / 2) 0.00 .0 \cos (\phi / 2)$
b. for a " 2 " rotation axis, the quaternion is $0.0 \sin (\phi / 2) 0.0 \cos (\phi / 2)$
c. for a " 3 " rotation axis, the quaternion is $0.00 .0 \sin (\phi / 2) \cos (\phi / 2)$
2) multiply the three quaternions in the correct order.
for example,
given:
rotation order 312
$\phi_{1}=30 \mathrm{deg}$
$\phi_{2}=60 \mathrm{deg}$
$\phi_{3}=45 \mathrm{deg}$
$\mathrm{Q}_{1}=0.00 .0 \sin (30 / 2) \cos (30 / 2)=0.0 \quad 0.0 \quad 0.258819045 \quad 0.965925826$
$\mathrm{Q}_{2}=\sin (60 / 2) \quad 0.0 \quad 0.0 \cos (60 / 2)=.5 \quad 0.0 \quad 0.0 \quad 0.866025404$
$\mathrm{Q}_{3}=0.0 \sin (45 / 2) \quad 0.0 \cos (45 / 2)=0.3826834320 .0 \quad 0.0 \quad 0.923879533$
$\mathrm{Q}_{\mathrm{f}}=\mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{Q}_{3}$
$=0.360423406 \quad 0.43967974 \quad 0.391903837 \quad 0.723317411$
